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Summary: In this study, we show a family of multilayered rigid-foldable and flat-foldable vault structures. A vault can be designed by constructing a 
rigid-foldable curved folded tubular arch and assembling the arches to construct a multilayered surface. The resulting vault is also rigidly flat-foldable. 
We first show the process involved in the geometric construction of the tubular structure from a given space curve defined by curvature and torsion 
functions. Next, we show a single-DOF rigid-folding motion that is enabled by the curved folded tube. Finally, we show the parametric design of a 
vault structure and discuss its design parameters and the resulting form. 
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INTRODUCTION 

Rigid-foldable origami, a mechanism comprising rigid 
panels and hinges, can be used for designing deployable 
shells. For large-scale implementation of such a 
mechanism, it is important to consider the thickness, not 
only that of a single panel but also the total depth of 
composite structures to increase the structure’s stiffness 
and insulate the interior from heat and sound. A general 
method for adding thickness to panels of rigid origami [1] 
involves a tradeoff between the thickness of panels and 
the maximum fold angles; thus, the structure cannot be 
folded compactly when the panels are thick. An 
alternative approach is to construct a tessellation of 
cellular structures comprising thin panels and thereby 
acquire virtual thickness. This approach allows efficient 
compact folding in a continuous one-DOF motion. To 
achieve this, the overall structure must be carefully 
designed such that it maintains the mechanism to 
continuously fold flat. Symmetric cylindrical rigid-
foldable modules have been used to construct a cellular 
structure in [2]. However, in the previous studies, there 
were problems in the design and construction processes: 
(1) design variations relied on translational symmetry, and 
(2) the number of panels tends to be very large. 

In this study, we solve these two problems by assembling 
rigid-foldable flat-foldable cylindrical structures using 
curved folding, a developable surface with smoothly 
curved creases. Unlike ordinary polyhedral origami, 
curved folding uses the bending of the surface for form 
development. As a result, the number of foldlines is 
reduced, making the folding-based fabrication easier 
while keeping the resulting 3D form complex and rich. 

The design process is based on the method proposed in 
[3]. We generate a family of tubular structures from a 
common space curve so that they rigidly fold consistently 
even as they are assembled. In this study, we extend the 
method to smooth curved folding without tiny rigid 
panels, to improve constructability. The contributions of 
this study include (1) the use of a tube for the construction 
module for avoiding any unwanted kinematic flexibility 

of smooth curved folding, and (2) the geometric 
consideration of the change in the proportion of the tube’s 
section leading to the parametric design of the vault 
structure with different section curves. 

First, we review the geometric construction of the folding 
structure generated from a space curve and discuss its 
kinematics in a cylindrical form. Next, we show the 
parametric design of the assembled vault and discuss the 
morphological characteristics related to its design 
parameters. 

GEOMETRIC CONSTRUCTION 

Single Curved Folding 

First, we review the basic geometry of the curved folding 
structure generated from a space curve. Consider a 
generic space curve ܠሺݏሻ  defined by the boundary 
conditions ܠሺ0ሻand ܠᇱሺ0ሻ  and its curvature and torsion 
functions ߢሺݏሻ  and ߬ሺݏሻ , respectively, where ݏ 
parameterizes the space curve by its arc length. Next, we 
obtain a valid continuous Frenet–Serret frame composed 
of tangent, normal, and binormal 
vectors 	ሼ܂ሺݏሻ, ,ሻݏሺۼ ۰ሺݏሻሽ ൌ ሼܠ′ሺݏሻ, ,ߢ/ሻݏሺ′′ܠ ሻݏሺ′ܠ ൈ
ሽߢ/ሻݏሺ′′ܠ  by integrating the curvature and torsion 
functions using the Frenet–Serret formula. 

 ቎
ሻݏᇱሺ܂
ሻݏᇱሺۼ
۰ᇱሺݏሻ

቏ ൌ ቎
0 ሻݏሺߢ 0

െߢሺݏሻ 0 ߬ሺݏሻ
0 െ߬ሺݏሻ 0

቏ ቎
ሻݏሺ܂
ሻݏሺۼ
۰ሺݏሻ

቏. (1) 

It is known that if a continuous valid frame is defined, we 
can construct a curved folding whose crease lies on the 
space curve (Fig. 01). We can find design examples in 
early computer graphics shading images by Resch [4].  
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Fig. 01. Space curve and curved folding. 

 

A variety of curved folded surfaces can be constructed 
from the same space curve. By defining the folding angle 
along the curve denoted by 2ߙሺݏሻ , we can uniquely 
determine the folded surface attached to the curve. Here, 
 ሻ is calculated as the angle from the osculating planeݏሺߙ
facing the binormal vector ۰ሺݏሻ(Fig. 02) to the tangent 
plane of the surface. The geometric relationship between 
the curves and the angles are summarized by the 
following equations, as investigated by Fuchs and 
Tabachnikov [5]. 

ሻݏሺߢ  cos ሻݏሺߙ ൌ  ሻ, (2)ݏଶୈሺߢ

 
ఈᇲሺ௦ሻ

୲ୟ୬ఈሺ௦ሻ
ൌ

ଵ

ଶ
ሻሺcotݏଶୈሺߢ ሻݏ୐ሺߚ െ cot  ሻሻ, (3)ݏሺୖߚ

 
ఛሺ௦ሻ

୲ୟ୬ఈሺ௦ሻ
ൌ െ

ଵ

ଶ
ሻሺcotݏଶୈሺߢ ሻݏ୐ሺߚ ൅ cot  ሻሻ, (4)ݏሺୖߚ

where the curvature of the crease in the crease pattern is 
denoted by ߢଶୈሺݏሻ  and the angles between the tangent 
and the rulings of the two surfaces are denoted by ߚ୐ሺݏሻ 
and ୖߚሺݏሻ,	respectively. 

 
Fig. 02. Parameters (Left: Crease pattern, Right: Folded form in 

perspective and orthogonal projection along vector T. 

 

Therefore, the ruling vectors are described as follows: 

୐ܚ  ൌ cos ୐ߚ ܂	 ൅ sin ୐ߚ cos ߙ ۼ ൅ sinߚ୐ sin ߙ ۰, (5) 

ܚୖ  ൌ cos ୖߚ ܂	 െ sin ୖߚ cosߙ ۼ ൅ sin ୖߚ sin ߙ ۰.  (6) 

The normal vectors of the surfaces are represented as 
follows: 

୐ܘ  ൌ െ sinߙ ۼ ൅ cos ߙ ۰, (7) 

ୖܘ  ൌ sin ߙ ۼ ൅ cosߙ ۰. (8) 

Here, four types of geometrically equivalent creased 
surfaces can be constructed from the same space curve 
and the set of ruling vectors, by choosing one from the 
four quadrants obtained by extending the ruling vectors in 
both positive and negative directions (Fig. 02). From the 

first (L+R+) or third (L−R−) quadrants, a curved folding, 
i.e., a developable creased surface, can be constructed. 
From the second (L−R+) or fourth (L+R−) quadrants, a 
curved seam, i.e., a flat-foldable creased surface 
constructed from a two-ply sheet welded at the curve, can 
be obtained. 

Modular Tube 

The tubular and cellular structures are constructed in the 
following manner. First, we calculate a curved folding in 
the first quadrant (L+R+) with the constant folding angle 
ሻݏሺߙ2) ൌ .ݐݏ݊݋ܿ ∈ ሺ0,180°ሻ) from a given space curve. 
At the constant folding angle, the crease pattern is 
characterized by the reflecting ruling lines forming angles 
with the curved crease (ߚ୐ሺݏሻ ൌ ሻݏሺୖߚ ൌ  .(ሻݏሺߚ

 cot ሻݏ୐ሺߚ ൌ cot ሻݏሺୖߚ ൌ
ିఛሺ௦ሻ

఑మీሺ௦ሻ ୲ୟ୬ఈሺ௦ሻ
. (9) 

Next, we draw another curve on one side (say, the right-
hand side) of the attached surfaces such that the 
corresponding tangent vectors of curves 1 (the original 
curve) and 2 (the new curve) are parallel (Fig. 03). The 
correspondence between the arc length parameters of 
these curves sharing the common ruling line is described 
by ݏଵሺݐሻ  and ݏଶሺݐሻ,  respectively, using a common 
parameter ݐ ∈ ሾ0,1ሿ.  The curves satisfy ܂ଵ൫ݏଵሺݐሻ൯ ≡
 ሻ൯, where the tangent vector in curve ݅ is denotedݐଶሺݏଶ൫܂
by ܂௜ . Here, ݏ௜ሺ0ሻ ൌ 0  and ݏ௜ሺ1ሻ  equals the length of 
curve ݅ . This construction ensures that curves 1 and 2 
have the same frame of ሼ܂, ,ۼ ۰ሽ  at the corresponding 
positions ݏଵሺݐሻ and ݏଶሺݐሻ, respectively. The new curve is 
uniquely determined if its endpoint is fixed. Here, the 
width between the curves at ݐ	 ൌ 0  is denoted by 
ଵଶ|௧ୀ଴ݓ ൌ ℓଵଶ|௧ୀ଴ sin ୖߚ , where ℓଵଶ  is the length of the 
ruling line between curves 1 and 2. 

 
Fig. 03. Construction of curves 2 and 4, indicating the change in the 

proportion. 

 

From the derived curve, we build a curved unfolding in 
the second quadrant (L+R−) using the same folding angle 
 Because the two curves share the same frame, they also .ߙ
share the same ruling vectors, ܚଵ,ୖሺݐሻ ൌ ሻݐଶ,ୖሺܚ  and 
ሻݐଵ,୐ሺܚ ൌ  ሻ. This ensures that the generated surfacesݐଶ,୐ሺܚ
overlap the right-hand side of the previous crease to form 
a valid two-crease surface (Fig. 04).   
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Fig. 04. Construction of the tube. 

 

We continue constructing curves from the previously 
derived surfaces in the same manner, choosing the third 
quadrant (L− R−) and, thereafter, the fourth quadrant (L− 
R+). Here, we choose  

ଶଷ|௧ୀ଴ݓ  ൌ ସହ|௧ୀ଴ݓ ൌ  ,୐|௧ୀ଴ݓ

ଵଶ|௧ୀ଴ݓ  ൌ ଷସ|௧ୀ଴ݓ ൌ  ௧ୀ଴, (10)|ୖݓ

so that curves 5 and 1 lie on each other to form a valid 
tubular surface. Equation (10) also ensures that the 
constructed tube is flat-foldable. In other words, the tube 
can be constructed by welding two sheets and folding it 
up along the center creases (Fig. 05). There also exits a 
continuous folding motion, which is discussed later. 

 
Fig. 05. Flattening the tube. 

 

Subsequently, we can construct a tube with arbitrarily 
scaled widths of ݓ∗ݑ୐|௧ୀ଴ and ୖݓ∗ݒ|௧ୀ଴. Therefore, any 
of the derived three creases ܠሺݐሻ  with respect to the 
original curve can be described by the linear combination 
of two vector functions ℓ୐ܚ୐ሺݐሻ and ℓୖୖܚ ሺݐሻ as  

ሻݐሺܠ  ൌ 	 ሻݐଵሺܠ ൅ ሻݐ୐ሺܚሻݐℓ୐ሺݑ ൅ ܚሻୖݐℓୖሺݒ ሺݐሻ, (11) 

where ܠଵሺݐሻ describes the original curve and ݑ and ݒ are 
real number parameters. This means that a set of ݑ and ݒ 
uniquely determines the curve, and the construction 
sequence can be arbitrarily set as long as the lengths of 
segments along ܚ୐ sum up to ݑ, and those along ୖܚ  sum 
up to ݒ (Fig. 06). This makes sure that complex cellular 

structures behave exactly in the same manner as the basic 
quadrangle tube. 

 
Fig. 06. Derived curve is defined by two parameters ݑ and ݒ (the 

sequence does not matter). 

 

Width Proportion 

From Fig. 03, we can see that the widths between the 
curves (the distance between the corresponding tangent 
lines, i.e.,	wଵଶ 	ൌ 	 sin ଵߚ ℓଵଶ) change with respect to the 
parameter t as a result of the construction method based 
on parallel tangent vectors. The change in the width is 
described as 

 
ௗ ୪୬௪భమ

ௗ௧
ൌ cot ଵߚ ଵ,ଶୈߢ

ௗ௦భ
ௗ௧

ൌ
ఛభ

ୡ୭୲ఈభ

ௗ௦భ
ௗ௧
, (12) 

 
ௗ ୪୬௪రభ

ௗ௧
ൌ cot ଵߚ ଵ,ଶୈߢ

ௗ௦భ
ௗ௧

ൌ
ିఛభ
ୡ୭୲ఈభ

ௗ௦భ
ௗ௧
. (13) 

This implies that a curve with torsion ߬ of the same sign, 
e.g., a helix, yields a curved folding with the proportion of 
 ସଵ, increasing or decreasing monotonically withݓ ଵଶtoݓ
respect to ݐ. An interesting aspect is that the area ܣଵଶଷସ ൌ
ସଵݓଵଶݓ  of the section parallelogram is constant with 
respect to ݐ. 

Regression 

The construction step of a new curve assumes that it lies 
within the developable surface. However, because a 
generic (non-cylindrical) developable surface has either a 
curve of regression or cone apex, the width ୖݓ|௧ୀ଴ must 
be set such that ୖݓ/ୖݓ୪୧୫ ൏ 1, where ୖݓ୪୧୫ is the width 
between the crease and the curve of regression. ୖݓ୪୧୫ is 
calculated as 

୪୧୫ୖݓ   ൌ
ሺୱ୧୬ఉభሻమ

ങഁభ
ങೞభ

ି఑మీ
. (14) 

Similarly, 

୐୪୧୫ݓ   ൌ
ሺୱ୧୬ఉభሻమ

ങഁభ
ങೞభ

ା఑మీ
. (15) 

Thus, the speed functions of the rulings can be 
represented as follows: 

  
ௗ௦మ
ௗ௧
ൌ ቀ1 െ

௪౎
௪౎ౢ౟ౣ

ቁ
ௗ௦భ
ௗ௧

. (16) 

The linearity can be exploited to obtain a global limit for 
the cylindrical and cellular structures that can be 
constructed from a given space curve. Assuming we get a 
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curve from a sequence of construction steps, which are 
represented by two parameters ݑ and ݒ in Equation (11), 
then 

 
ௗ௦

ௗ௧
ൌ ቀ1 െ

௨௪ై
௪ైౢ౟ౣ

െ
௩௪౎
௪౎ౢ౟ౣ

ቁ
ௗ௦భ
ௗ௧

. (17) 

This produces a regression line for parameter ݐ.  

 
௨௪ై
௪ైౢ౟ౣ

൅
௩௪౎
௪౎ౢ౟ౣ

ൌ 1. (18) 

This forms a ruled surface boundary across upon which 
the space curve cannot lie, thereby defining a domain in 
the ݒݑ space that results in a valid curve. 

 
Fig. 07. Regression 

 

KINEMATICS 

Single Curved Folding vs. Tube Structure 

In general, a curved folding can transform in two ways: 
folding without a change in the rulings position (ߚߜ୐ ൌ
ୖߚߜ ൌ 0), and twisting with a change in the rulings (Fig. 
08). We call former motion “rigid folding” of the curved 
fold because it is the limit of the rigid folding motion of a 
discrete quad panel folding as the panels are infinitely 
subdivided. The latter motion is also a valid motion 
without stretching of the material and is unique to the 
smooth curved folding. We can parameterize the 
configuration using the continuous rulings alignment 
mappings ܵ଴,ଵ: ଴ݏ → ଵݏ  and ଵܵ,ଶ: ଵݏ → ଶݏ  between the 
boundary curves 0 and 2, the crease curve 1, and the 
folding angle at the start point ߙଵሺ0ሻ . ௜ܵ,௜ାଵ  uniquely 
determines ߚଵ௅ and ߚଵோ and Equations (3) and (4) give a 
differential equation, through which the folding angle 
ሻݏሺߙ  and torsion ߬ሺݏሻ  are uniquely determined. Any of 
the variations ܵߜ଴,ଵ  and ߜ ଵܵ,ଶ  corresponds to a valid 
transformation with the change in ruling alignment. 
Therefore, a curved folding with a single curved crease 
has excess degrees of freedom and is hard to control its 
form and motion. 

  

Fig. 08. Folding motion with drifting rulings. 

 

In contrast, the drifting motion can be restricted in the 
tubular structure. We similarly parameterize the 
configuration of the tube by ruling alignment ௜ܵ,௜ାଵ: ௜ݏ →
௜ାଵݏ  and ߙ௜ሺ0ሻ (݅ ൌ 1,⋯ ,4ሻ. However, in this case, the 
parameters cannot be independently determined because 
if each crease is separated by adding a cut in the middle of 
the developable strips connecting the creases, the cut 
boundary does not match with the adjacent one when 
௜ܵ,௜ାଵ  and ߙ௜ሺ0ሻ  are arbitrarily given. To construct a 

consistent surface shared by adjacent creases ݅ and ݅ ൅ 1, 
the curvature of the surface relative to the speed function 

௜ݏ  and ݏ௜ାଵ  must be identical: ቛ
ௗܘ೔,೔శభ
ௗ௧

ቛ ൌ ቛ
ௗܘ೔శభ,೔
ௗ௧

ቛ , 

which can be represented as 

 
఑೔,మీ ୲ୟ୬ఈ೔ ୡ୭ୱୣୡఉ೔,೔శభ

఑೔శభ,మీ ୲ୟ୬ఈ೔శభ ୡ୭ୱୣୡఉ೔శభ,೔

ௗ௦೔
ௗ௦೔శభ

ൌ 1,  (19) 

where ߚ௜,௜ାଵ  and ߚ௜ାଵ,௜ଵ  refer to ߚ௜,ୖ  and ߚ௜ାଵ,ୖ , 
respectively, if ݅ is odd, and ߚ௜,୐ and ߚ௜ାଵ,୐, respectively, 
if ݅ is even. 

In addition, to maintain the homeomorphism to a cylinder, 
the closure condition must be assigned. Assuming that the 
boundary curves of the tube are kept straight, the 
boundary follows a sheering motion keeping ߙଵሺ0ሻ ൌ
ଶሺ0ሻߙ ൌ ଷሺ0ሻߙ ൌ   .ସሺ0ሻߙ

To sum up, the motion is parameterized by a single 
parameter ߙଵሺ0ሻ  and four variations of the ruling 
alignment functions ߜ ௜ܵ,௜ାଵ, which are constrained by four 
identities given by Equation (19). This implies that in a 
generic case, there is sufficient number of constraints to 
stabilize the tube if ߙଵሺ0ሻ is fixed. We conjecture that if 
the boundary curves are straight quads and no cone apex 
exists on the surface, rigid folding motion will be the only 
motion available; however, this has not been proven. Here, 
the former assumption can be realized by reinforcement 
of the boundary whereas the latter is the result of the 
physical behavior of a thin elastic sheet that stores an 
infinite elastic energy at the cone apex. 

Tubes Can Rigidly Fold 

In a rigid folding motion, intrinsic parameters such as 

௜,ଶୈߢ ௜,௜ାଵߚ ,  and 
ௗ௦೔
ௗ௦೔శభ

 do not change. Therefore, the 

folding motion with δߙଵሺݐሻ ≡ δߙଶሺݐሻ ≡ δߙଷሺݐሻ ≡
δߙସሺݐሻ ≡ δߙ satisfies Equation (19). For a given folding 
angle 2ߙ	 ∈ 	 ሾ0,180°ሻ, the curve defined by the curvature 

ሻݏሺߢ ≡
ୡ୭ୱఈబሺ௦ሻ

ୡ୭ୱఈሺ௦ሻ
ሻݏand torsion ߬ሺ	ሻݏ଴ሺߢ	 ≡

୲ୟ୬ఈሺ௦ሻ

୲ୟ୬ఈబሺ௦ሻ
߬଴ሺݏሻ is 

the curve in a folded state, where the original space curve 
at folding angle 2ߙ଴ 	∈ 	 ሺ0,180°ሻ  is defined by the 
curvature ߢ଴ሺݏሻ and torsion ߬଴ሺݏሻ. 

The cellular structure folds rigidly and flatly in the same 
manner. This can be visualized as the parallel tangent 
vectors and tangent planes of the ruled surfaces at a 
common parameter ݐ  orthogonally projected from the 
common tangent vector, which form a consistent 
pantograph mechanism. 

COMPOSITE DEPLOYABLE VAULT 

We show designs of deployable shells using the proposed 
tubular structures. The basic strategy for the design is to 
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first construct a tubed arch from a curve and then 
assemble the arches to form a composite vault.  

We design the arch tube such that its boundary quads lie 
on a common xy plane in a deployed state of 	0 ൏ ߙ2 ൏
180° , say 2ߙ ൌ 90° . If this condition is satisfied, the 
consecutive curves follow the same property and the 
boundary of the vault is also coplanar. The planarity of 
each boundary implies that ߚሺ0ሻ ൌ ଵሻݏሺߚ ൌ 90° and thus, 
߬ሺ0ሻ ൌ ߬ሺݏଵሻ ൌ 0, where the total length of the curve is 
denoted by ݏଵ . The coplanarity of the boundaries, in 
general, requires the coincidence of four parameters, i.e., 
ሺ0ሻ܂ െ ଵሻݏሺ܂ ൌ ૙  and ൫ܠሺݏଵሻ െ ሺ0ሻ൯ܠ ⋅ ሺ0ሻ܂ ൌ 0 . In 
general, the tangent vectors and the positions are 
computed using numerical integration. Here, we show a 
subset of the design space by assuming reflection 
symmetry, i.e., ߢሺݏሻ ൌ ଵݏሺߢ െ ሻݏሻ, ߬ሺݏ ൌ െ߬ሺݏଵ െ  ሻ. Inݏ
this case, the coplanarity is simplified to 

଴ሻݏሺ0.5܂   ⋅ ሺ0ሻ܂ ൌ 0. (20) 

Typical Design 

We built a parametric design system using Grasshopper to 
calculate the curve, and the tubular and cellular structures. 
The following shows a typical parametric design example 
of an assembled vault using space curves of constant 
curvature and harmonic torsion. 

First, the curve is set such that it has constant curvature 

ሻݏሺߢ ൌ ሻݏ଴ and harmonic torsion ߬ሺߢ ൌ ଴ߢܽ	 sin ቀ2ߨ
௦

௦బ
ቁ. 

We calculate the curve and its frame by discretizing the 
curve by converting it into a polyline. Then, ߢ଴ݏ଴  is 
numerically determined using a line search algorithm to 
satisfy Equation (20). We continue the construction of 
tubes so that they share the developable creases, i.e., 
curve 3 of a certain tube is curve 1 of the following tube. 

Equations (12) and (13) calculates the change in the width 
proportion. Owing to the symmetry of the harmonic 
function, the two end sections share a common 
proportion ோሺs଴ሻݓ	 ൌ ோሺ0ሻݓ , and the change in the 
proportion is the maximum at the middle of the curve as 

଴ሻݏோሺ0.5ݓ ൌ ݁
భ
ഏ
௔఑బ௦బݓோሺ0ሻ . Here, the change in the 

proportion at the middle of the curve is an important 
design parameter for the resulting vault as the aspect ratio 
of the rectangular section ݓோ/ݓ௅ at ݏ ൌ 0 determines the 
section feature curve on a horizontal plane (xy plane), 
whereas the proportion at ݏ ൌ ଴ݏ0.5  determines the 
section feature on a vertical plane (zx plane).   

As an example, Fig. 09 shows a vault structure from a 
curve with ܽ ൌ 0.3, in which Equation (20) is satisfied at 
଴ݏ଴ߢ ൎ 3.305, and thus, the change in the proportion is 
௪ೃሺ଴.ହ௦బሻ

௪ೃሺ଴ሻ
ൎ 1.37 . We assemble tubes with rectangular 

sections of aspect ratio p୶୷ ൌ
௪ೃሺ଴ሻ

௪ಽሺ଴ሻ
ൌ 0.75  and obtain 

p୶୸ ൌ
௪ೃሺ଴.ହ௦బሻ

௪ಽሺ଴.ହ௦బሻ
ൌ 1.41 at xz plane.  

Fig. 10 shows the design variations obtained by changing 

parameters 
௪ೃሺ଴ሻ

௪ಽሺ଴ሻ
 and ܽ . By adjusting these parameters, 

the slope of the sections at the xy and zx planes can be 
varied, as seen in Fig. 10. 

The structure continuously folds to a flat state. Once the 
folding angle is varied, the boundary curves do not lie on 
the ground plane. This is attributed to Bellow’s Theorem, 
which forbids rigidly collapsible, closed polyhedra.  

CONCLUSION 

In this study, we showed the geometric construction 
method of curved folded tubular and cellular structures 
using a space curve. We discussed the folding kinematics 
of the structure and showed a family of design variations 
of the deployable vault, by assembling multiple arches. 
The shape of the assembled vault can be controlled by 
controlling the amount of total torsion and the proportion 
of the rectangular section.  
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 Fig. 10. Variations of the derived form; the slope of the section in the zx plane is indicated in blue and the slope in the xy plane is indicated in red. 

 
Fig. 09. Folding motion of an example vault constructed form foldable tubes. 


