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Abstract: Rigid-foldable structures are foldable surfaces consisting of rigid panels and 
hinges, thus can be used for wide variety of deployable structures without relying on 
flexible materials. In this paper, we present a family of rigid-foldable collapsible 
cylindrical polyhedra which is of great interest of structural engineering field. The 
symmetry operations in order to synthesize the cylindrical structures and their space 
filling tessellation are shown. 

1 INTRODUCTION 

One of the basic problem areas on foldable structure is to fold a cylindrical shell in axial 
direction to the extreme, i.e., to a flat state, while keeping its axis and internal envelope 
like a bellows. There are lots of need for such structures in industry, such as deployable 
structures, bellows, and packaging. The present authors are specifically interested in the 
“bellows-type” foldable structures with a purely geometric folding mechanism while 
keeping substantially its sectional area during the folding/deploying maneuver. 



    

The best way to understand the background of this problem is to consider the case of 
post buckling behavior of a thin cylindrical shell under axial loading. The resulting 
geometric form is called Yoshimura-pattern, which consists of repetition of the 
diamond pattern. Because the Yoshimura-pattern is obtained through the inextensional 
deformation process, it can be considered as the candidate of a foldable cylindrical 
shell. However, the matter is not simple as expected for this case. For a particular 
dimension of cylindrical shell, one can define the folded state or the pattern to realize a 
given axial length. However, once this geometric parameter is defined, it becomes a 
stable structure that is no more foldable without elastic deformations (Fig. 1). In short, 
the Yoshimura-pattern is a folded cylinder but not a continuously foldable one. 

 
Fig.1: Yoshimura Patterns. From Left to Right: Original cylinder and Yoshimura 

Patterns of radial frequency of 8, 6, 4, and 3. Note that each state is static. 

Though the Yoshimura-pattern provides a negative example for the present problem, 
the “buckling” and “concave polyhedral surface” involved in it are still the major 
keywords for the following researches. The typical approach on these studies depends 
on the model representing a cylinder with a polyhedron consisting of number of 
polygonal plates members. The most difficult problem is that, in the course of folding 
and deploying process, some amount of in plane deformation of polygonal plates are 
inevitable for geometric compatibility. For example, Guest and Pellegrino (1994) 
proposed a variation of cylindrical foldable shell by twisting Yoshimura-pattern to 
enable a valid state in three-dimensional and also in the flat-folded state. However, the 
produced designs are multi-stable structures that cannot be built from rigid or thick 
material. Therefore, the existence of such in-plane strains severely limits the design area 
of the foldable structures. 

Here, we consider rigid-foldable geometry, where rigid-folding implies a continuous 
folding motion of a polyhedral surface in which its facets are kept congruent. Such 
structures can be used for wide variety of deployable structures built from rigid panels 
and hinges without in-plane strains. As it is already shown, not all foldable structures 
are rigid foldable. In this respect, a solution of bi-axial rigid folding of a flat plate exists 
and is known as Miura-ori (Miura, 1980) (Fig. 2). However, this principle has not 
successfully been applied to the case of cylinders until recently, i.e., existing designs of 



    

foldable cylindrical structures have relied on the in-plane distortion of panels or the 
transition of foldlines. 

 
Fig.2: Miura-ori is a rigid-foldable disk. 

Recently, the second author (Tachi, 2009) disclosed a novel concept of rigid-foldable 
polyhedral cylindrical structures.  The core of the concept is that the basic unit 
structure is constructed by joining two pieces: a single vertex origami with four 
congruent parallelograms and its mirror image. In other words, the Miura-ori and its 
mirror image are joined. The generalization of the concept results in groups of rigid-
foldable cylindrical structures.  

During further studies on one of Tachi's tube structure designs, we have accidentally 
discovered the characteristic “star-polyhedron” embedded in it. It turned out that, the 
polyhedron constitutes the very core of the design (Fig. 3). In this paper, we will 
disclose the characteristic of the star-shaped cylindrical polyhedron by producing it by 
means of symmetry operations; the polyhedron can be constructed from pasting 
together Miura-ori vertices. Through this study, we will also show that the polyhedron 
is actually a space filling polyhedron. This leads to a 3D cellular structure that can 
simultaneously folds in x, y, and z dimensions. 

 
Fig.3: Star-polyhedron with a synchronized motion. 



    

2 MODULAR STRUTCTURE 

First of all, let us examine the basic geometric properties of Miura-ori and its vertex. A 
vertex of Miura-ori (composed of 4 foldlines) exhibits a synchronized motion of folding 
angles as shown in Fig. 4. This results in a one-DOF mechanism from unfolded to flat-
folded states. We can repeat this vertex structure to construct an array, i.e., Miura-ori. 
Within the motion, the parallel lines are kept parallel, and planar polylines are kept 
planar. This is the very core of our study. 

tanα cosβ = tanγ
α = constant: an inner angle of parallelogram
β = variable: 1/2 of dihedral angle
γ = variable: angle between the straight foldline and the base plane
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Fig. 4: A folding motion of Miura-ori vertex. 

Then we consider a modular rectangle composed by 9 facets with 4 identical Miura-ori 
vertices as denoted in Fig. 5. Because of the repeating structure, this surface transforms 
preserving the parallelism of foldlines and the planarity and congruency of end 
polylines. This enables us to set a local coordinate that works throughout the 
transformation (Fig. 6). Specifically, we extract a set of parallel lines {A0B0, ..., A3B3, 
C0D0, ..., C3D3} and use this direction as the x-axis. Symmetric structure of Miura-ori 
vertex forces polyline AiBiCiDi (i = 0, 1, 2, 3) to be planar; here we term the containing 
plane i-plane. We define xy-plane as 0-plane. Since we cut parallel lines by 
perpendicular boundary polylines A0A1A2A3 and D0D1D2D3 (termed A- and D-polylines, 
repsectively), each of the folded state of polylines lies on a plane perpendicular to x-
axis, which is termed A- or D-plane.  Here, note that A- and D-polylines are congruent 
to each other and each has 180° rotational symmetry around the axis through the 
midpoint of A1A2 or D1D2 along x-direction. We term these axes A- and D-axes. The 
module transforms so that the surface boundary is tangent to A-, D-, 0-, and 3-planes, 
where A- and D-planes are kept parallel to yz-plane, and 0- and 3-planes to xy-plane. 

In a design context, we can generalize the rectangular module so that it has 5, 7, or 
2n+1 columns by adding extra 2, 4, or 2n zigzagged foldlines similar to B- and C-
polylines. This is because the property of the boundary (e.g., A- and D-planes) in this 
case is equivalent to that in the 3 columns case. Hence our method described in this 



    

paper is essentially a general approach to merge 4 pieces of Miura-ori to form a 
cylindrical surface. 
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Fig 5: Notation of the module. 
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Fig 6: Coordinate system. 

3 CYLINDRICAL POLYHEDRA 

Described co-planarity and congruency of edges enable us to paste modules edge-to-
edge with symmetric operation without producing any gap between them throughout 
the transformation. The following shows the process (Fig. 7 and Fig.8). 

1) Produce a mirror image of the module with respect to its D plane. This connects 
two units (in any folded state) without gap. In this procedure, the A-axes of the 
original and mirrored modules coincide since the x-directions of the original and 
copied modules are opposite (Fig.7 middle). 



    

2) With respect to the common A-axis, rotate the connected modules by 180°. This 
also validly connects four modules in any folded state since A-polyline on the 
boundary has rotational symmetry with respect to the axis. Here, line AiBi is rotated 
to the position of A3-iB3-i (Fig.7 right). 

3) The rotation makes the connected part doubly covered by facets (Fig. 8(a)). 
However the difference between the lengths of AiBi and A3-iB3-i produces the 
mismatch. If we remove the doubly covered part, we obtain the singly covered star-
shaped polyhedron as shown in Fig. 8 (b). 

4) Since 0- and 3-planes are kept planar by the process 1) and 2), we can also extend 
this geometry to the z-axial direction by mirror reflecting with respect to 3-plane. 
We can also cut out one or two of the three-rows of the module in order to adjust 
the corrugation frequency (Fig. 8 (c)). 

Once the cylindrical polyhedron is built, we can naturally extract a two-row module and 
its glide reflectance (Fig. 8 (d)). In fact, the rotation in 2) is essentially equivalent to the 
glide reflection with respect to a plane through A-axis and parallel to zx-plane with the 
half wavelength translation in z-direction. 

A-plane

D-plane

A-axis

 
Fig 7: Symmetry operation to construct a cylinder by composing the modules. 

(a) (b) (c) (d)  
Fig. 8: Trimming out the singly covered star-shaped polyhedron and extending the 

cylinder by repeating mirror reflection to z-direction.  



    

The pattern of the cylinder can be parameterized by the dimension of the module 
represented by �, l, m, and d and the number of repetition N. On the other hand, the 
transformation of the shape is represented by single variable � (0� � �90°) representing 
the half of dihedral angle of any edge between adjacent facets in the same column such 
as A1B1 or B2C2 (all of them are equal). Patterns with different � produce different 
folding motions. Fig. 9, 10 and 11 show the transformation of cylinders in case of 
�=30°, 45°, and 54°, respectively, using common l=1, m=2, d=1, N=9. 

 
Fig. 9: The cylinder of �=30° at � = 89°, 67.5°, 45°, 22.5°, 1° (from left to right). 

 
 Fig. 10: The cylinder of �=45° at � = 89°, 67.5°, 45°, 22.5°, 1° (from left to right). 

 
Fig. 11: The cylinder of �=54° at � = 89°, 67.5°, 45°, 22.5°, 1° (from left to right). 



    

Because the proposed cylindrical polyhedra are composed of rigid facets, we can attach 
solid panels to the facets while producing kinetic motion without distorting them. By 
applying the thickening method introduce by (Tachi, 2010), we could obtain a thick 
panels structure that follows the kinetic motion of proposed cylindrical polyhedron as 
shown in Fig. 12. This indicates that our structure can be utilized in different scales and 
design contexts. 

 
Fig. 12: Cylindrical polyhedra using thick panels. (�=45°) 

4 SPACE FILLING AND 3D CELLULAR STRUCTURE 

The proposed cylinders can periodically tessellate the three-dimensional space without 
producing any gap as shown in Fig. 13. In other words, the cylinders consists a 3D 
cellular structure. This tessellation property can be preserved for any folded state; hence 
this tessellation has a synchronized one-DOF rigid-folding motion inherent from the 
cylinder. This volumetric polyhedral complex can smoothly fold itself to two flat states. 
The validity of the structure can be similarly described by applying symmetry 
operations to the modules we used for synthesizing cylinders.  

 
Fig. 13: 3D cellular structure in folding motion. 



    

In the construction of a cylinder, we used D-plane for the reflection and A-axis for the 
rotation. However, because of the symmetric structure of the module, A and B can 
substitute C and D, and vice versa via 180° rotation with respect to the axis through the 
center and along the z-axis. Therefore, a pair of cylinders is produced from a single 
module as shown in Fig. 14 left. Constructing a cylinder produces four congruent 
modules. We recursively construct cylinders from already built modules. This 
procedure forms a regular cellular structure that fills the three-dimensional space. In 
order to understand this regularity, consider the contact points of A- and D- polylines 
with 0-plane or the xy-plane. The points are located on the vertices of rhombus whose 
diagonals are along x- and y-axes. Therefore constructing a cylinder from a module 
adds a rhombus pasted edge-to-edge to the existing ones, and thus A- and D- polylines 
are essentially located at the nodes of rhombus grid on xy-plane (Fig. 14 right). 

 
Fig. 14: Left: A pair of cylinders produced from one module. 

Right: Rhombus grid on whose vertices A- and D- polylines are located. 

Now we obtained a foldable cellular structure of single-walled (non-manifold) 
polygonal mesh. Then, we show that the star-shaped cylindrical polyhedra fill the space 
with every part of the surface touching an adjacent polyhedron. This means that the 
polyhedra can completely doubly cover the cellular polygonal mesh. We first 
decompose the cylinder into 6 parts, comprising of three pairs of congruent corrugated 
surfaces P-P�, Q-Q�, and R-R� (Fig. 15). Then we consider 6 cases of translation, each of 
which moves one part of the unit to its congruent counterpart, e.g., P to P� or Q� to Q. 
Under such transformations, cylindrical unit moves to adjacent six units. Therefore 
every part of the cylinder is shared by and only by the corresponding adjacent cylinder 
as shown in Fig. 16. Here, note that the orientations of congruent counterparts (e.g., P 
and P�) are opposite. This makes adjacent cylinders “touch” each other. Therefore every 
surface is doubly covered, and thus the cylindrical polyhedron can tessellate the three-
dimensional space. 

5 CONCLUDING REMARKS 

First, we have accidentally discovered the characteristic “star-polyhedra” following the 
general concept proposed by Tachi (2009). The symmetry operations in order to 
synthesize the cylindrical structures are shown. The family of the polyhedra can be used 
for wide variety of deployable structures and other mechanisms.  



    

Second, during the detailed study on the polyhedra, we have unexpectedly discovered 
that it has the space filling property in spite of its star-shape. The resulting volumetric 
polyhedral complex can smoothly fold itself to two flat states. This novel concept will 
surely attract the interests of potential users. 

Through this study, we were able to present a novel concept of polyhedra having 
unprecedented properties. 
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Fig. 15: Cylinder decomposed into 6 parts. 
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Fig. 16: Correspondence of parts to adjacent cylinders. Parts {P, P�, Q, Q�, R, R�} of 

cylinder 0 is shared by adjacent cylinders {1, 4, 2, 5, 3, 6}, respectively.  
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