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Abstract
In this paper, we present a novel cylindrical deployable structure and variations of its design
with the following characteristics:

1. Flat-foldable: The shape flattens into a compact 2D configuration.
2. Rigid-foldable: Each element does not deform throughout the transformation.
3. One-DOF: The mechanism has exactly one degree of freedom.
4. Thick: Facets can be substituted with thick or multilayered panels without introducing

the distortion of elements.

Keywords: origami, deployable structure, flat-foldable, rigid-foldable, isometric transfor-
mation

1 Introduction
Cylindrical deployable and collapsible structures composed of two-dimensional elements are
useful in various designs. Such a structure can form a watertight surface that encloses a
certain desired volume by the addition of two surfaces at the ends, and the surfaces can be
compactly folded down into a two-dimensional state. Several flat-foldable cylindrical de-
ployable structures have been proposed thus far, e.g., by Hoberman [3], Guest and Pellegrino
[1], Sogame and Furuya [7], and Nojima [6]. However, all of these existing deployable
tubes are bistable structures whose transformation mechanisms rely on the in-plane elastic
deformation. Since the mechanism of such a structure relies on the material flexibility, the
applications were limited: e.g., an energy absorption device that can be used only once, as
proposed by Wuet al. [8], a small-scale medical device by Kuribayashiet al. [4], a deploy-
able membrane structure for use in space proposed by Sogame and Furuya [7].

In this paper, we propose cylindrical deployable structures in which every element of the sur-
face is geometrically free of distortion. This enables the construction of mechanisms using
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stiff materials, and such mechanisms can potentially be applied to designing repeatedly fold-
able architectural or human-scale structures under gravity. We first introduce the basic unit
structure, and then, we generalize it to obtain isotropic and anisotropic types of structures,
both of which produce one-DOF rigid motions. Furthermore, we present methods for realiz-
ing an isotropic type of generalized mechanism with thick panels and piano hinges and for
realizing an anisotropic mechanism with multilayered thin surfaces.

2 Basic Geometry
The basic unit structure is constructed by joining two pieces: a single vertex origami with
four congruent parallelograms and its mirror image (with respect to thezx-plane), as shown
in Figure 1(a). The same structure is also known in the field of artistic origami, where Thoki
Yenn designed a model “Flip Flop” by combining two units [9]. The vertex produces a one-
DOF transformation mechanism in which the edges on the plane of reflection (zx-plane)
always lie on the plane. This enables the formation of a valid joint structure from two pieces.
The rhombus at each end, which we call the “section rhombus,” is maintained co-planar
(parallel toxy-plane) throughout the transformation. This enables the repetition of the units
in the axial direction (z direction), to construct a cylinder of arbitrary length (Figure 2).
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(a) Mechanism of the unit. Note that four edges on the plane of
reflection (dotted lines) are kept on the plane while the section
rhombus (solid lines) is kept coplanar.
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Figure 1: Motion of a single unit.

The structure transforms from the completely unfolded state to the flat-folded state. In the
flat-folded state, the distance between two adjacent units is zero. This means that a long
cylindrical structure with multiple units can be compactly folded in the axial direction. We
will now investigate the relationship between the folding motion in the axial direction and
the deformation of the section rhombus. Letξ and ϕ denote the dihedral angle between
facets incident to the edge of the section rhombus (all four dihedral angles are equal) and the
external angle of the top vertex of the section rhombus, respectively, as shown in Figure 1(a).
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Thesetwo angles are related as follows:
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whereϕ0(0 < ϕ0 < π) is the angleϕ when the model is flat-folded. The distanceℓ between
adjacent units is written in terms ofϕ as

ℓ =

√
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2
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2
ℓ0, (2)

whereℓ0 is the distance in the unfolded state. As shown in Figure 1(b),ϕ0 is the key pa-
rameter that controls the relation between two motions. Whenϕ0 is close toπ a strongly
non-linear motion approximated by a series of two separate motions is produced. We as-
sumed thatϕ0 ̸= π, because forϕ0 = π, the folding motions of the units are completely
independent of each other.

The unit occupies a volume ofa2ℓ sinϕ, wherea indicates the length of each side of the
rhombus. The volume is zero in the unfolded and flat-folded states, and it attains the max-
imum value

√
1

1+2 cot2
ϕ0
2

ℓ0a
2 at cos ϕ = 1+cos ϕ0

2 . The maximum volume increases asϕ0

approachesπ.

Figure2: A rigid-foldable cylindrical structure withϕ0 close toπ (ϕ0 = 168◦).

3 Generalizations
Rigid-foldability of the proposed structure can be interpreted in two different ways, each of
which results in a different method of generalization: “isotropic generalization” or “anisotropic
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generalization.”

3.1 Isotropic Generalization

The first interpretation is that the unit is composed of mechanical joints, which we call “folds”
and “elbows.” The joints are constructed by reflecting a two-facet strip with a V-shaped
section with respect to a plane perpendicular to the bisector plane of the dihedral angle;
the fold is constructed by ray reflection, while the elbow is constructed by image reflection
(Figure 3(a)). We call these vertices isotropic because in these special cases of vertices, the
absolute values of dihedral angles for incidence on opposite edges are equal.

We model the unit of a cylinder by connecting these joints to form a closed linkage. The
bisector planes of dihedral angles are set on the common section plane. The polygonal linkage
changes its shape within the plane according to the common dihedral angleξ. This generally
prevents a unit from being rigid-foldable, i.e., changing theξ of a cylindrical shape can result
in its edges tearing, as shown in Figure 4. Our goal is to ensure that the loops are always valid
for any value ofξ.
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Figure 3: Fold and Elbow

Figure4: Unfolding (Left) or folding (Right) results in breaking the valid loop.

A joint enables a one-DOF mechanism that converts motion in the axial direction to motion
in the section plane, which are represented by anglesξ andϕ, respectively (Figure 3(a)). In
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thesame manner as Equation (1), the conversion fromξ to ϕ can be determined in terms of a
parameterϕ0, the angleϕ in the flat-folded state (Figure 3(b)).

ϕfold (ϕ0, ξ) = 2 arctan
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if ξ ̸= π

π if ξ = π.
(4)

We can construct a valid loop by first constructing a half-loop linkage whose end edges
remain parallel for anyξ and then connecting the linkage with its copy rotated by180 degrees.
The half loop must satisfy the following equation for anyξ (0 ≤ ξ ≤ π):∑

all folds

ϕfold (ϕ0, ξ) +
∑

all elbows

ϕelbow(ϕ0, ξ) = π. (5)

In order to obtain such a half-loop, we use the following three combinations that make their
sums constant:

ϕfold(ϕ0, ξ) + ϕfold(−ϕ0, ξ) ≡ 0, (6)

ϕelbow(ϕ0, ξ) + ϕelbow(−ϕ0, ξ) ≡ 0, (7)

ϕfold(ϕ0, ξ) + ϕelbow(π − ϕ0, ξ) ≡ π. (8)

These three pairs can be seen as the fundamental pairs of joints required to construct a valid
linkage. Connecting these pairs of joints in an arbitrary ordering such that the sum of the an-
gles isπ results in a valid half-loop linkage. The sequence in the basic structure is constructed
using Equation (8) and can be represented as follows:

f(ϕ0)e(π − ϕ0),

where e(ϕ0) and f(ϕ0) represent an elbow and a fold, respectively. Figure 5 shows an example
of the isotropic generalization realized by using this method. The sequence of joints in this
example (half-loop from the bottom facet to the top facet in the counterclockwise direction)
is,
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In this example, the substructures based on Miura-ori, f(− 3π
4 )f( 3π

4 ), are inserted in order to
make the model expand in the radial directions as well as in the axial direction.

3.2 Anisotropic Generalization

The proposed structure is a collection of parallelogram strips —in each strip, it is ensured
that the edges between facets are parallel. We can construct a general valid cylindrical struc-
ture based on the parallelogram strips in the following manner. First, draw an arbitrary closed
polyline with two-fold rotational symmetry, i.e., a zonogon, on the section plane; the zonogon
represents a shape of the section. We call this zonogon a “section zonogon.” Then, extrude
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Figure5: An isotropic generalization with radial expansive motion.

the section zonogon along an arbitrary vector at an angle ofξ0
2 to the section plane in order

to from a closed parallelogram strip. Without loss of generality, we assume that this vector,
which we call the “extrusion vector,” is parallel to thezx plane; the extrusion vector is rep-

resented asl0 =
(
ℓ cos ξ0

2 , 0,−ℓ sin ξ0
2

)
, whereℓ is the length of the vector. Next, connect

the strip to its mirror image with respect to the extruded section plane. Thus, we obtain the
single unit.

The valid motion of the structure is produced as follows. We pick up half of the parallelo-
gram strip and fold it along its edges. It is ensured that the edges, i.e., the extruded vertices,
remain parallel after the folding. The direction of the edges is represented as a rotated ex-

trusion vectorl =
(
ℓ cos ξ

2 , 0,−ℓ sin ξ
2

)
. On the other hand, the section zonogon must lie

on the section plane throughout the transformation. These constraints determine the ori-
entation of each facet, and thus, they determine the orientation of each side of the section
zonogon, independently with respect to the rotation of adjacent facets. Assume that a side
of the section zonogon forms an angleθ with the x axis. Thus, it is represented as a vec-
tor r = (r cos θ, r sin θ, 0), wherer is the length of the segment (Figure 6). The vector
r is rotated such that the angle between the edge and the extrusion vector is constant, i.e.,
l · r = const. Hence, we obtain the following relation:

cos θ =
cos ξ0

2

cos ξ
2

cos θ0,

whereθ0 = θ|ξ=ξ0 . The sign ofθ is determined by the sign ofθ0. If θ0 = 0, the facet can
be rotated in both directions. Now, we have obtained the folded half-strip. The other half of
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thestrip is folded in the same manner and the corresponding end edges of the half strips meet
because they are parallel and equal in length.
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Figure6: Rotation of a parallelogram.

The generalized structure is collapsible: the flat-folded state corresponds to the case where
the half-strip is completely flattened. However, unlike the isotropic generalized structures,
the completely unfolded state does not commonly exist. This is because the extrusion of
an arbitrary polyline produces anisotropic vertices, in which the two dihedral angles of the
opposite edges are not equal. The unfolding motion from the flat-folded state stops when any
of the sides become horizontal i.e.,cos θ = 1. Figure 7 shows an example of the generalized
form.

4 Realization of Thick Surface
For the structure described in the previous sections, it was assumed that the thickness of the
material is zero. However, in a real engineering application, the surface must be realized
using a material with non-negligible thickness. In particular, in an architectural context, it
is necessary to design structures with rigid panels or multilayered surfaces with a desired
thickness. We propose two methods to realize the desired thickness without the loss of rigid-
foldability: a method in which facets and foldlines are replaced with thick panels and piano
hinges, respectively, and a method that enables thick multilayed surfaces composed of sur-
faces of negligible thickness. The former can be applied to the isotropic generalization and
the latter to the anisotropic generalization.

4.1 Thick Panels

The basic structure (Section 2) and its isotropic generalization (Section 3.1) can be realized
by using thick panels and rotating hinges (Figure 8). In order to avoid the interference that
occurs when folding thick panels, we shift each axis of rotation to the side of the mountain
fold, as shown in Figure 9(a). The structures of the vertices are changed in order to account
for the point of intersection of the shifted axes, which are no longer coincident. In general,
a vertex with non-concurrent incident axes yields6 constraints, as opposed to a concurrent
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Figure7: Folding motion in an example of anisotropic generalization. Only the top facets are
flat in the most unfolded state (Left).

origami vertex with3 constraints; this means that a general degree-4 vertex can become an
overconstrained structure.

In order to realize a valid mechanism without overconstraints, we utilize special rigid body
joints that replace the folds and the elbows. There are three types of mechanisms, as shown
in Figure 9(b): one for the fold and two for the concave and convex elbows. A fold joint is
replaced by panels with two thicknesses; in order to achieve valid motion, the thickness of the
connection part in the fold joint is set as a half of the thickness in the other parts. The same
idea is used by Hoberman [2], who realizes deployment mechanisms based on thick origami.
A concave elbow (an elbow with a negative gauss area) and a convex elbow (an elbow with a
positive gauss area) can be replaced with panels of constant thickness.

4.2 Multilayering

An anisotropic structure based on parallelogram strips can be realized using multilayered
surfaces. As discussed in Section 3.2, each edge of the zonogon is uniquely assigned a
valid orientation for a given folding angleξ2 of the extrusion vector. This enables a connected
cylindrical structure extruded from multiple zonogons sharing a vertex and edges to transform
without being separated. Hence, a composite structure of rigid-foldable and flat-foldable
multilayered cylindrical structures is obtained by tessellating the original section zonogon
with multiple zonogonal tiles (Figure 10). We can control the composition of the layers by
changing the size of tiles or by subdividing the parallelograms.

This multilayering method also yields various designs with arbitrary composite sections. Fig-
ure 11 shows an example of a flat-foldable and rigid-foldable multilayered single curved sur-
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Figure8: Folding motion of the structure with thick panels. The axes of rotation lie on the
edges of the thick panels.

(a) The shifting of the
axes.

(b) Rigid body structure with non-concurrent axes replacing the joints. Left:
Fold joint. Middle: Concave elbow. Right: Convex elbow.

Figure 9: Realization with thick panels and hinges.
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Figure10: Multilayered cylinders. The section is composed of zonogons.

Figure11: The folding motion of a multilayered surface along a given two-dimensional curve.



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

face. The structure is automatically constructed such that the section is formed by connected
parallelograms along a given two-dimensional curve. In order to make the flat-folded shape
compact, we use an evenly spaced zigzag polyline. We have implemented a parametric design
of this type of structure usingGrasshopper[5].

5 Conclusion
We have presented two types of general flat-foldable cylindrical deployable structures com-
posed of rigid quadrilateral panels. The isotropic generalization is based on combinations of
appropriate joint structures, and the anisotropic generalization is based on the folding motion
of parallelogram strips. We have shown that isotropic general structures can be realized by
using thick panels and hinges and anisotropic structures can be realized by using multilayered
surfaces.
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