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Summary 

We propose a novel type of hybrid structures, in which multi-DOF rigid foldable structures will be 
stiffened using Vacuumatics i.e., the structural system of negative pressured double membrane 
containing particles. The structure is transformed to a desired 3D configuration following the 
kinematics of origami when the hinges are plastic and flexible, and then stiffened at dihedral hinges 
by strengthening negative pressure. In addition, the negative pressure gives a small moment at the 
hinge lines, which helps to solve singularity problem of rigid origami at the initial unfolded state.  
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1. Introduction 

Rigid foldable structures based on rigid panels and hinges, i.e., rigid origami, are potentially 
applicable for creating transformable or temporary spaces. The core advantage of rigid origami is in 
their geometric scalable mechanisms, i.e., can be scaled up to large scale, and their property of 
forming continuous surfaces without in-plane deformation. In particular, multi-DOF rigid foldable 
structures based on triangle panels have an advantage in its flexibility to follow the change in the 
environment and human activities while the 3D form becomes geometrically stable after fixing the 
boundary points. One of such example patterns is doubly-expandable transformable shells by Resch 
and Christiansen [1]. However, such a structure tends to be structurally flexible in reality, even after 
it is geometrically pinned at its boundary. For example in the case of [1], numbers of rods (3 for 
each concave vertex) are added in order to stabilize the structure; these fixing rods make the 
structure not actually transformable or reusable. Therefore, effective temporary stiffening methods 
have been required. 

In order to effectively solve this problem, we utilize another structural system called Vacuumatics, 
which is a negative pressured double membrane containing particles. The structure is initially 
plastic or viscoelastic, but by adding the negative pressure, the friction force between compressed 
particles makes the structure stiff. As far as we know, the oldest published concept of an adaptive 
structure using Vacuumatics is “LIVING-ROOM” by J. Gilbert in 1971 [2 pp.52-53], preceded by 
simple mockup test of a vault in 1970. Vacuumatics concept is researched by several parties in 
1970s, such as by Frei Otto [3]. It is after decades that the structural principle is paid attention again 
when it is rediscovered by people such as Sobek et al. in 2000s [4] [5].With the social background 
of sustainability, the potential of Vacuumatics as adaptive insulation also attracts some researchers 
after the rediscovery. The concept of controlling the stiffness and plasticity of the material by the 
strength of vacuum has been studied [6]. One of the unsolved problems of pure Vacuumatics system 
is the method for controlling its overall shapes, which is essential in order to use the concept for 
adaptive structure. 

We propose a novel type of hybrid structures, in which multi-DOF rigid foldable structures are 
stiffened at their hinges using Vacuumatics. The key concept is that the stiffness of hinges is 



controlled by the strength of the vacuum asserted to the structure. The structure is transformed to a 
desired 3D configuration when the hinges are plastic and flexible, and then stiffened at dihedral 
hinges by strengthening negative pressure. In addition, the negative pressure gives a small moment 
at the hinge lines at the initial construction, helping to remove the instability caused by the 
singularity in the unfolded state.  

In this paper, we explain this novel concept from the geometric perspective. We will review the 
kinematics of rigid origami structures to show the singularity in the initial unfolded state and the 
relation between the 3D form and the 2D boundary configuration.  

2. System Overview 

2.1 Origami Pattern 

Since any rigid origami pattern can be used for the hybrid system, we especially choose a triangle 
based regular corrugation pattern of origami composed of both convex and concave vertices. Here, 
a vertex is convex (or concave) when the solid angle around the vertex is greater (or less) than 2π. 
This includes corrugation patterns by Resch [1], origami patterns known as waterbomb corrugation 
or “namako” [7], and triangulated version of Miura-ori [8]. It is preferable to include both convex 
and concave vertices in order to produce a freeform surface having both positive and negative mean 
curvatures. For example, the PCCP shell or Yoshimura pattern [8] is not suitable for this purpose 
because it comprises only with convex vertices. 

Here, we use a variation of waterbomb corrugation based on 36° grids (Figures 1 and 2). This is 
compactly flat-foldable and flexible enough in the limited range of folding angle (from 0° to 161° 
as described in the following subsection).  

  
Figure 1: Left: A variational waterbomb corrugation pattern. Right: close-up of the pattern (thick: 
mountain fold, thin: valley fold). A vertex with 4 (or 2) mountain folds is convex (or concave resp.). 

  
Figure 2: Sequence of unfolding 



2.2 Hinge Structure 

Flexible hinges allow the continuous rigid plates to be transformed to a desired configuration; 
however they must be stiffened to hold it against the self-weight and imposed loading. This 
requirement is essential in the folding process as well as in the final folded state. Our proposed 
solution is that the flexible hinge is stiffened by given negative pressure.  

2.2.1 Layout 

Rigid origami structures can be built with double layered thick composite panels. In order to avoid 
the collision of panels, we offset the panel outline as proposed in [9]. The width of offset is 
determined by maximum folding angle and the thickness, in the example design, the folding angle 
can change from 0°to 169°, with the ratio of thickness to the length (longest part) of exterior and 
interior panel are approximately 0.009 and 0.006 respectively.  

This produces gaps between the panels on one of its sides where we fill in aggregate particles 
packed in breathable material. Then the whole structure is packed in an airtight membrane forming 
a single air chamber (Figures 3 and 4) 

2.2.2 Angular stiffening 

The structural principle of vacuum is the difference of the air pressure between inner and outer 
enclosed volume. Smaller inner air pressure act on the aggregate particle as compression force 
which is balanced with the tension force loaded on the enclosing membrane. By the compression 
force the aggregate particles are deformed and their maximum contact between each of them is 
achieved. Under this prestressed status the stiffened angular hinge can be effective as supporting 
structures of the global system and could work until the compression stress remains equal to or 
larger than the tensile stress caused by loading.  

Another interesting aspect of Vacuumatics structure is in its plastic behavior that the particles 
reconfigure themselves to be in another equilibrium state. Therefore, we can produce a plastic hinge 
whose strength is controlled by the strength of negative pressure. Asserting appropriate amount of 
(smaller) vacuums keeps the whole structure in a plastic state and assists the process of folding by 
removing excess force asserted to the control points. 

2.2.3 Small additional moment 

To allow folding the rigid plates in one direction, the packing particle is set on only one side (valley 
folding side) of the plates. Consequently the negative pressure gives a small moment at the hinge 
lines. Certainly the resulting moment would be regarded as an unfavorable effect in the structural 
point of view, however this can be helpful to solve singularity problem of rigid origami at the initial 
unfolded state. 

 
Figure 3: Hinge Design. Left: particles are placed in between panels. Middle: Self-folding moment 

is induced by the vacuum. Right: The vacuum keeps the hinge stiff. 



 
Figure 4: Hinge Design 

2.3 Construction Process  

The prospective construction process is as follows (Figure 5): 

(1) Prefabrication:  
Layout the membranes, panels, particles, and fabrics in a plane to form the composite structure. 
Then, the negative pressure is added to the structure, which induces the small folding moment. 
This makes the structure non-singular, and the whole folding motion can be actuated by 
constraining the boundary points. Fold the structure to a compact state so that it can be carried 
to the site. 

(2) On-site deployment:  
Unfold the structure and transform it by controlling the configuration of the boundary vertices. 
The folding process is performed under an appropriate amount of vacuum to make the structure 
plastically deformable. Strengthen the vacuum when the structure is fixed to the final state. The 
structure can be re-used by removing the vacuum and re-folding it to the compact state. 
 

 
Figure 5: Idea of the construction process 

3. Kinematics 

3.1 Basics 

The kinetic behavior of rigid origami based on triangle panels is generally described using unstable 
truss model. Here we denote the numbers of vertices, vertices on the boundary, and the edges by V, 
V0, E. The configuration of the structure is represented by the coordinate 3V-vector ܠ ൌ
ሺܠଵ ⋯ ௏ሻ୘ܠ ൌ ሺݔଵ ଵݕ ଵݖ ௏ݔ	⋯	 ௏ݕ  ሻܠሺۺ ௏ሻ୘, which are constrained by its edge lengthsݖ



(E-vector) being unchanged from the original state. When 3ܸ ൐ ܧ ൌ 0 , the infinitesimal 
transformation of the structure can be represented by the Jacobian matrix (E×3V matrix) of the 
length vector. 

൤
ۺ߲
ܠ߲
൨ ሼΔܠሽ ൌ ሼ૙ሽ																																																																											ሺ1ሻ 

A nontrivial solution of Equation (1) gives the transformation mode, and the number of degrees of 
freedom of the structure (including rigid transformation of the whole structure) is the dimension of 
the solution space, which is ܨܱܦ ൌ 3ܸ െ ܧ ൅ ܵ, where S is the number of degenerate constraints or 
the number of self-equilibrium state. In the case of triangular mesh homeomorphic to a disk, the 
numbers of elements are related by Euler’s equation, which yields ܨܱܦ ൌ ଴ܸ ൅ 3 ൅ S.  By adding 
sufficient number of support conditions, e.g., pinning vertices to the ground, the structure becomes 
stable (ܨܱܦ ൌ 0). 

3.2 Singularity at a Flat State 

The initial unfolded state of a rigid origami structure has at least V singular conditions. This is 
because the elements of the 1	ሺmod 3ሻ-st columns of the Jacobean matrix are all 0, i.e., ߲ܮ ⁄௜ݖ߲ ൌ

0, where ܮ ൌ ൫ݔ௜ െ ௝൯ݔ
ଶ
൅ ൫ݕ௜ െ ௝൯ݕ

ଶ
. For a developable origami surface, this degeneracy holds 

only when every fold is unfolded to a plane. As a result, the valid configuration space comprises 
3ܸ െ  dimensional cells sharing one point (where everything is unfolded). This means that we-ܧ
need to choose the right transformation mode at the singular flat state in order to reach a desired 
state (Figure 6). The bending moment at each edge resulting from the vacuum produces the initial 
transformation mode that follows correct mountain and valley assignment and also convexity and 
concavity of vertices. 

 
Figure 6: Unfavorable (Left) and valid (Right) transformation modes. 

3.3 3D state and Constraints 

In a generic half folded state, the degrees of freedom is given by ܨܱܦ ൌ ଴ܸ ൅ 3. This implies that 
we can fix the whole configuration by only fixing a part of the boundary points, for example 
pinning at least ଴ܸ 3⁄ ൅ 1 vertices. In Figure 7, we are pinning nearly every other boundary points 
to the ground, which results in an statically indeterminate stable structure with about ଴ܸ 6⁄  excess 
constraints.  

Therefore, the whole 3D configuration is dynamically controlled by the configuration of the pinned 
vertices. Because of the excess constraints, the configuration cannot be determined arbitrarily. Here, 
we show an interactive approach for formfinding the valid configuration of pinned vertices. We use 
the unstable truss model in Equation 1 and add geometric constraints (Figure 7), 

1. Fold Angle Constraints: for every fold angle ߩ |ߩ| , ൑ 180° െ ߜ  .  



This condition comes from the design of hinges for treating the thickness. ߜ ൌ 11° is chosen in 
the example design. 

2. Ground Constraints: for every vertex to be pinned on the ground plane, i.e., ܖ୘ሺܠ௜ െ ଴௜ሻܠ ൌ 0, 
where ܖ is the normal of the plane and ܠ଴௜ is a reference point on the ground, e.g., ܖ ൌ  ௭ and܍
଴௜ܠ ൌ ૙ for a horizontal plane. Since our method is based on iteration, this is adaptable to an 
arbitrary nonlinear terrain surface. 

3. User Defined Constraints: 
In this example, several boundary points are constrained to be on a vertical plane, derived from 
an existing building. 

In this model, the pinned vertices are allowed to slide on the ground and only fixed in one 
dimension. This forms an underdetermined system, in which an infinitesimal valid motion is 
represented by 

ሾ۱ሿሼΔܠሽ ൌ ൦

ۺ߲
ܠ߲
߲۵
ܠ߲

൪ ሼΔܠሽ ൌ ሼ૙ሽ,																																																																	ሺ2ሻ 

where ۵ ൌ ૙ represents the above mentioned constraints. Here, inequality conditions are treated as 
equality conditions if and only if they are not satisfied (penalty function). The minimal norm 
solution of this equation from an arbitrary estimation Δܠ଴ is given using Moore-Penrose generalized 
inverse ሾ۱ሿା. 

ሼΔܠሽ ൌ ሼ۷ െ ሾ۱ሿାሾ۱ሿሽሼΔܠ଴ሽ,																																																																											ሺ3ሻ 

We use Freeform Origami [10] for interactively giving Δܠ଴  while numerically solving the 
constraints. We have checked that the transformation path exists between the unfolded state, the 
compactly folded state, and the states shown in Figure 8, while keeping the fold angle constraints 
and ground constraints. The continuous transformation sweeps the pinned vertices to draw planar 
paths. Moving the pinned vertices along the paths actuates the 3D configuration of the model in the 
physical model.  

 
Figure 7: Geometric Constraints. 



 
Figure 8: Variational configurations controlled by the boundary shapes. 

  
Figure 9: Illustrative image of the example design with gourd shape. 



4. Conclusion and Future works 

We proposed a novel concept of hybrid structure based on multi-DOF rigid origami and 
Vacuumatics hinges in order to achieve an adaptive freeform surface whose 3D geometry and 
structural stiffness are controllable. By controlling the stiffness of the hinges, the stiffness of the 
structures can be effectively changed. The moment at the hinges produced by the vacuum removes 
the singularity in the unfolded state and makes the folding of the pattern controllable by the position 
of the boundary vertices. 

In this paper, we only worked on the concept and the geometric behavior. We would like to develop 
the study to verify the effectiveness of the concept though experimental and analytical approaches. 
The patterns can be  
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